Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the trigonometric identities

cosec x = [tex]\frac{1}{sinx}[/tex] , cot x = [tex]\frac{cosx}{sinx}[/tex]

Consider the left side

[tex]\frac{(1+cosA)^2-(1-cosA)^2}{sin^2A}[/tex] ← expand and simplify numerator

= [tex]\frac{1+2cosA+cos^2A-(1-2cosA+cos^2A}{sin^2A}[/tex]

= [tex]\frac{1+2cosA+cos^2A-1+2cosA-cos^2A}{sin^2A}[/tex]

= [tex]\frac{4cosA}{sin^2A}[/tex]

= 4 × [tex]\frac{1}{sinA}[/tex] × [tex]\frac{cosA}{sinA}[/tex]

= 4cosecAcotA

= right side,  thus proven