Solve the compound inequality 2x − 3 < 7 and 5 − x ≤ 8. A. x ≥ 3 and x < 2 B. x ≥ 3 and x < 5 C. x ≥ −3 and x < 2 D. x ≥ −3 and x < 5

Respuesta :

Given:

The compound inequality [tex]2x-3 < 7[/tex] and [tex]5-x \leq 8[/tex].

To find:

The solution for the given compound inequality

Solution:

We have, compound inequality [tex]2x-3 < 7[/tex] and [tex]5-x \leq 8[/tex].

For [tex]2x-3 < 7[/tex],

Add 3 on both sides.

[tex]2x < 7+3[/tex]

[tex]2x < 10[/tex]

Divide 2 on both sides.

[tex]x< 5[/tex]            ...(i)

For [tex]5-x \leq 8[/tex],

Subtract 5 from both sides.

[tex]-x \leq 8-5[/tex]

[tex]-x \leq 3[/tex]

Divide both sides by -1. So, the sign of inequality is changed.

[tex]x \geq -3[/tex]            ...(ii)

Using (i) and (ii), we get the solution of given compound inequality as

[tex]x \geq -3[/tex]  and [tex]x< 5[/tex]

Therefore, the correct option is D.