Answer: Required 99% confidence interval : (48.30%, 61.7%)
Step-by-step explanation:
Confidence interval for PROPORTION: [tex]p\pm z^* \times S.E.[/tex], where p = sample proportion , z* = two-tailed critical z-value and S.E. = standard error.
As per given: p=55%
Critical z-value for 99% confidence = 2.576
S.E. = 2.6%
Then, required confidence interval :
[tex]55\% \pm (2.576)\times 2.6\%\\\\\approx55\% \pm6.70\%\\\\=(55\%-6.70\%,\ 55\%+6.70\%)\\\\=(48.30\%,\ 61.7\%)[/tex]
Required 99% confidence interval : (48.30%, 61.7%)