In a chemical plant, 24 holding tanks are used for final product storage. Four tanks are selected at random and without replacement. Suppose that six of the tanks contain material in which the viscosity exceeds the customer requirements.
a. What is the probability that exactly one tank in the sample contains high-viscosity material?
b. What is the probability that at least one tank in the sample contains high-viscosity material?
c. In addition to the six tanks with high viscosity levels, four different tanks contain material with high impurities. What is the probability that exactly one tank in the sample contains high-viscosity material and exactly one tank in the sample contains material with high impurities?

Respuesta :

Answer:

a) P(A) = 0,4607     or   P(A) = 46,07 %

b) P(B) = 0,7120   or 71,2 %

c) P(C) = 0,2055  or P(C) = 20,55 %

Step-by-step explanation:

We will use two concepts in solving this problem.

1.- The probability of an event (A) is for definition:

P(A) = Number of favorable events/ Total number of events FE/TE

2.- If A and B are complementary events ( the sum of them is equal to 1) then:

P(A) = 1 - P(B)

a) The total number of events is:

C ( 24,4) = 24! / 4! ( 24 - 4 )!    ⇒  C ( 24,4) = 24! / 4! * 20!

C ( 24,4) = 24*23*22*21*20! / 4! * 20!  

C ( 24,4) = 24*23*22*21/4*3*2

C ( 24,4) = 24*23*22*21/4*3*2    ⇒  C ( 24,4) =  10626

TE = 10626

Splitting the group of tanks in two 6 with h-v  and 24-6 (18) without h-v

we get that total number of favorable events is the product of:

FE = 6* C ( 18, 3)  = 6 * 18! / 3!*15!  =  18*17*16*15!/15!

FE =  4896

Then P(A) ( 1 tank in the sample contains h-v material is:

P(A) = 4896/10626

P(A) = 0,4607     or   P(A) = 46,07 %

b) P(B) will be the probability of at least 1 tank contains h-v

P(B) = 1 - P ( no one tank with h-v)

Again Total number of events is 10626

The total number of favorable events for the ocurrence of P is C (18,4)

FE = C (18,4) = 18! / 14!*4! = 18*17*16*15*14!/14!*4!

FE = 18*17*16*15/4*3*2  = 3060

Then P = 3060/10626

P = 0,2879

And the probability we are looking for is

P(B) = 1 - 0,2879

P(B) = 0,7120   or 71,2 %

c) We call P(C) the probability of finding exactly 1 tank with h-v and t-i

having 4 with t-i tanks is:

reasoning the same way but now having 4 with t-i (impurities) number of favorable events is:

FE = 6*4* C(14,2) = 24 * 14!/12!*2!

FE = 24* 14*13*12! / 12!*2

FE = 24*14*13/2    ⇒  FE = 2184

And again as the TE = 10626

P(C) = 2184/ 10626

P(C) = 0,2055  or P(C) = 20,55 %