Respuesta :
Answer:
(a) The ratio of the pressure amplitude of the waves is 43.21
(b) The ratio of the intensities of the waves is 0.000535
Explanation:
Given;
density of gas, [tex]\rho _g[/tex] = 2.27 kg/m³
density of liquid, [tex]\rho _l[/tex] = 972 kg/m³
speed of sound in gas, [tex]C_g[/tex] = 376 m/s
speed of sound in liquid, [tex]C_l[/tex] = 1640 m/s
The of the sound wave is given by;
[tex]I = \frac{P_o^2}{2 \rho C} \\\\P_o^2 = 2 \rho C I\\\\p_o = \sqrt{2 \rho CI}[/tex]
Where;
[tex]P_o[/tex] is the pressure amplitude
[tex]P_o_g= \sqrt{2 \rho _g C_gI} -------(1)\\\\P_o_l= \sqrt{2 \rho _l C_lI}---------(2)\\\\\frac{P_o_l}{P_o_g} = \frac{\sqrt{2 \rho _l C_lI}}{\sqrt{2 \rho _g C_gI}} \\\\\frac{P_o_l}{P_o_g} = \sqrt{\frac{2 \rho _l C_lI}{2 \rho _g C_gI} }\\\\ \frac{P_o_l}{P_o_g} = \sqrt{\frac{ \rho _l C_l}{ \rho _g C_g} }\\\\ \frac{P_o_l}{P_o_g} = \sqrt{\frac{ (972)( 1640)}{ (2.27)( 376)} }\\\\\frac{P_o_l}{P_o_g} = 43.21[/tex]
(b) when the pressure amplitudes are equal, the ratio of the intensities is given as;
[tex]I = \frac{P_o^2}{2 \rho C}\\\\I_g = \frac{P_o^2}{2 \rho _g C_g}-------(1)\\\\I_l = \frac{P_o^2}{2 \rho _l C_l}-------(2)\\\\\frac{I_l}{I_g} = (\frac{P_o^2}{2 \rho _l C_l})*(\frac{2\rho_gC_g}{P_o^2} )\\\\\frac{I_l}{I_g} = \frac{\rho _gC_g}{\rho_lC_l} \\\\\frac{I_l}{I_g} = \frac{(2.27)(376)}{(972)(1640)}\\\\ \frac{I_l}{I_g} = 0.000535[/tex]