Respuesta :
Answer:
The 95% confidence interval for the standard deviation is (0.14, 0.54).
Step-by-step explanation:
The complete data and question is:
Sloth CW Ratios ; {1.5 , 1.09 , 0.98 , 1.42 , 1.49 , 1.25}
The 95% confidence interval for the standard deviation of this data is < σ < (two decimals - include the leading zero) .
Solution:
Compute the sample standard deviation as follows:
[tex]\bar x=\frac{1}{n}\sum x=\frac{1}{6}\times 7.73=1.2883\\\\s=\sqrt{\frac{1}{n-1}\sum (x-\bar x)^{2}}=\sqrt{\frac{1}{6-1}\times 0.2387}=0.2185[/tex]
The (1 - α)% confidence interval for the variance is:
[tex]CI=\frac{(n-1)s^{2}}{\chi^{2}_{\alpha/2}}<\sigma^{2}<\frac{(n-1)s^{2}}{\chi^{2}_{1-\alpha/2}}[/tex]
Confidence level = 95%
⇒ α = 0.05
The degrees of freedom is,
df = n - 1 = 6 - 1 = 5
Compute the critical values of Chi-square:
[tex]\chi^{2}_{\alpha/2, (n-1)}=\chi^{2}_{0.025,5}=12.833\\\\\chi^{2}_{1-\alpha/2, (n-1)}=\chi^{2}_{0.975,5}=0.831[/tex]
*Use a Chi-square table.
Compute the 95% confidence interval for the variance as follows:
[tex]CI=\frac{(n-1)s^{2}}{\chi^{2}_{\alpha/2}}<\sigma^{2}<\frac{(n-1)s^{2}}{\chi^{2}_{1-\alpha/2}}[/tex]
[tex]=\frac{5\times (0.2185)^{2}}{12.833}<\sigma^{2}<\frac{5\times (0.2185)^{2}}{0.831}\\\\=0.0186<\sigma^{2}<0.2873\\\\=\sqrt{0.0186}<\sigma<\sqrt{0.2873}\\\\=0.1364<\sigma<0.5360\\\\\approx 0.14<\sigma<0.54[/tex]
Thus, the 95% confidence interval for the standard deviation is (0.14, 0.54).
