Respuesta :

Answer:

D. 1 : 2

Step-by-step explanation:

Given:

A(-6, -2),

B(6, 7),

C(-2, 1)

Required:

Ratio of AC : CB

SOLUTION:

Find AC:

[tex] AC = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]

Let,

[tex] A(-6, -2) = (x_1, y_1) [/tex]

[tex] C(-2, 1) = (x_2, y_2) [/tex]

[tex] AC = \sqrt{(-2 -(-6))^2 + (1 -(-2))^2} [/tex]

[tex] AC = \sqrt{(4)^2 + (3)^2} [/tex]

[tex] AC = \sqrt{16 + 9} = \sqrt{25} [/tex]

[tex] AC = 5 [/tex]

Find CB:

[tex] CB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} [/tex]

Let,

[tex] C(-2, 1) = (x_1, y_1) [/tex]

[tex] B(6, 7) = (x_2, y_2) [/tex]

[tex] CB = \sqrt{(6 -(-2))^2 + (7 - 1)^2} [/tex]

[tex] CB = \sqrt{(8)^2 + (6)^2} [/tex]

[tex] CB = \sqrt{64 + 36} = \sqrt{100} [/tex]

[tex] CB = 10 [/tex]

Find AC : CB

AC : CB = 5 : 10 = 1 : 2