The graph of a linear function is shown on the grid. What is the rate of change of y with respect to x for this function? Please hurry it’s urgent Thank you

Answer:
[tex] -0.2 [/tex]
Step-by-step explanation:
Given:
(-3, 3.6);
(5, 2)
Required:
Rate of change
SOLUTION:
Rate of change for the function is given as [tex] \frac{y_2 - y_1}{x_2 - x_1} [/tex].
Let,
[tex] (-3, 3.6) = (x_1, y_1) [/tex]
[tex] (5, 2) = (x_2, y_2) [/tex]
Rate of change = [tex] \frac{2 - 3.6}{5 - (-3)} [/tex]
[tex] = \frac{-1.6}{8} [/tex]
[tex] = -0.2 [/tex]
The rate of change of y with respect to x for this function is -0.2
Given :
The graph of a linear function is shown on the grid
To find the rate of change of y with respect to x , we need to pick two points from the graph
Two points are (-3,3.6) and (5,2)
Lets apply slope formula to find out rate of change
[tex]slope =\frac{y_2-y_1}{x_2-x_1}\\slope =\frac{2-3.6}{5+3} \\slope = -0.2[/tex]
The rate of change of y with respect to x for this function is -0.2
Learn more : brainly.com/question/24930128