Respuesta :

60

See steps

Step by Step Solution:

More Icon

Reformatting the input :

Changes made to your input should not affect the solution:

(1): "2.7" was replaced by "(27/10)". 8 more similar replacement(s)

STEP

1

:

           27

Simplify   ——

           10

Equation at the end of step

1

:

    27 62   93 12    62 93    12 27

 (((——•——)-(——•——))+(——•——))-(——•——)

    10 10   10 10    10 10    10 10

STEP

2

:

           6

Simplify   —

           5

Equation at the end of step

2

:

    27 62   93 12    62 93    6 27

 (((——•——)-(——•——))+(——•——))-(—•——)

    10 10   10 10    10 10    5 10

STEP

3

:

           93

Simplify   ——

           10

Equation at the end of step

3

:

    27 62   93 12    62 93   81

 (((——•——)-(——•——))+(——•——))-——

    10 10   10 10    10 10   25

STEP

4

:

           31

Simplify   ——

           5

Equation at the end of step

4

:

    27 62   93 12    31 93   81

 (((——•——)-(——•——))+(——•——))-——

    10 10   10 10    5  10   25

STEP

5

:

           6

Simplify   —

           5

Equation at the end of step

5

:

    27 62   93 6   2883  81

 (((——•——)-(——•—))+————)-——

    10 10   10 5    50   25

STEP

6

:

           93

Simplify   ——

           10

Equation at the end of step

6

:

    27 62   93 6   2883  81

 (((——•——)-(——•—))+————)-——

    10 10   10 5    50   25

STEP

7

:

           31

Simplify   ——

           5

Equation at the end of step

7

:

    27   31     279     2883     81

 (((—— • ——) -  ———) +  ————) -  ——

    10   5      25       50      25

STEP

8

:

           27

Simplify   ——

           10

Equation at the end of step

8

:

    27   31     279     2883     81

 (((—— • ——) -  ———) +  ————) -  ——

    10   5      25       50      25

STEP

9

:

Calculating the Least Common Multiple

9.1    Find the Least Common Multiple

     The left denominator is :       50

     The right denominator is :       25

       Number of times each prime factor

       appears in the factorization of:

Prime

Factor   Left

Denominator   Right

Denominator   L.C.M = Max

{Left,Right}

2 1 0 1

5 2 2 2

Product of all

Prime Factors  50 25 50

     Least Common Multiple:

     50

Calculating Multipliers :

9.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M

   Denote the Left Multiplier by  Left_M

   Denote the Right Multiplier by  Right_M

   Denote the Left Deniminator by  L_Deno

   Denote the Right Multiplier by  R_Deno

  Left_M = L.C.M / L_Deno = 1

  Right_M = L.C.M / R_Deno = 2

Making Equivalent Fractions :

9.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.      837

  ——————————————————  =   ———

        L.C.M             50

  R. Mult. • R. Num.      279 • 2

  ——————————————————  =   ———————

        L.C.M               50  

Adding fractions that have a common denominator :

9.4       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

837 - (279 • 2)     279

———————————————  =  ———

      50            50

Equation at the end of step

9

:

  279    2883     81

 (——— +  ————) -  ——

  50      50      25

STEP

10

:

Adding fractions which have a common denominator

10.1       Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

279 + 2883     1581

——————————  =  ————

    50          25

Equation at the end of step

10

:

 1581    81

 ———— -  ——

 25     25

STEP

11

:

Adding fractions which have a common denominator

11.1       Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

1581 - (81)     60

———————————  =  ——

    25          1

Final result :

 60