Answer:
[tex](h\circ g)(d)=-8d +23[/tex]
Step-by-step explanation:
Composite Function
Given g(d) and h(d) real functions, the composite function named (hog)(d) is defined as:
[tex](h\circ g)(d)=h(g(x))[/tex]
For practical purposes, it can be found by substituting g into h.
The functions g and h are given as:
[tex]g(d) = 2d - 5[/tex]
[tex]h(d) = -4d +3[/tex]
Substituting g into h:
[tex](h\circ g)(d)=-4(2d - 5) +3[/tex]
Operating:
[tex](h\circ g)(d)=-8d +20 +3[/tex]
[tex]\boxed{(h\circ g)(d)=-8d +23}[/tex]