Given parameters:
Evaluate;
[tex]\sqrt[4]{(16)^{-2} }[/tex]
Now let us solve this;
[tex]\sqrt[4]{(16)^{-2} }[/tex];
the fourth root can be expressed as the power of [tex]\frac{1}{4}[/tex] ;
[tex]\sqrt[4]{(16)^{-2} }[/tex] = [(16)⁻²][tex]^{\frac{1}{4} }[/tex]
= (16)[tex]^{-2 x \frac{1}{4} }[/tex]
= (16)[tex]^{\frac{-1}{2} }[/tex]
= [tex]\frac{1}{16^{\frac{1}{2} } }[/tex]
= [tex]\frac{1}{\sqrt{16} }[/tex]
= [tex]\frac{1}{4}[/tex]
The solution is [tex]\frac{1}{4}[/tex]