Answer:
[tex](\frac{1}{1256})^4[/tex]
Step-by-step explanation:
Given
[tex]1256^{-4}[/tex]
Required
Write as an exponent of positive number
From law of indices, we have that:
[tex]a^{-b} = \frac{1}{a^b}[/tex]
So:
[tex]1256^{-4}[/tex] becomes
[tex]\frac{1}{1256^4}[/tex]
1 to the power of any digit is 1,
So, the above can be rewritten as:
[tex]\frac{1^4}{1256^4}[/tex]
Apply the following law of indices:
[tex]\frac{a^m}{b^m} = (\frac{a}{b})^m[/tex]
So:
[tex]\frac{1^4}{1256^4}[/tex] becomes
[tex](\frac{1}{1256})^4[/tex]