Respuesta :

Answer:

[tex](\frac{1}{1256})^4[/tex]

Step-by-step explanation:

Given

[tex]1256^{-4}[/tex]

Required

Write as an exponent of positive number

From law of indices, we have that:

[tex]a^{-b} = \frac{1}{a^b}[/tex]

So:

[tex]1256^{-4}[/tex] becomes

[tex]\frac{1}{1256^4}[/tex]

1 to the power of any digit is 1,

So, the above can be rewritten as:

[tex]\frac{1^4}{1256^4}[/tex]

Apply the following law of indices:

[tex]\frac{a^m}{b^m} = (\frac{a}{b})^m[/tex]

So:

[tex]\frac{1^4}{1256^4}[/tex] becomes

[tex](\frac{1}{1256})^4[/tex]