Respuesta :
Answer:
The distance is [tex] s = 2.3 \ m [/tex]
Explanation:
From the question we are told that
The frequency of the current is [tex]f = 10\ kHz = 10 *10^{3} \ Hz[/tex]
The magnitude of the current is [tex]I_o = 0.5\ Amps[/tex]
The number of turns is [tex]N = 150\ turns[/tex]
The diameter is [tex]d = 30 mm = 0.03 \ m[/tex]
The detection level is [tex]V_{rms} = 200 \mu V = 200 * 10^{-6} \ V[/tex]
Generally the radius is mathematically represented as
[tex]r = \frac{d}{2}[/tex]
=> [tex]r = \frac{0.03}{2}[/tex]
=> [tex]r 0.015 \ m [/tex]
Generally the magnetic field generated by the fence is mathematically represented as
[tex]B = \frac{\mu_o * N * I}{2 * \pi * s}[/tex]
Here s is the point where the do will feel the magnetic field
[tex]\mu_o[/tex] is the permeability of free space with value [tex]\mu_o = 4\pi * 10^{-7} N/A^2 [/tex]
So
[tex]B = \frac{ 4\pi * 10^{-7} * 150 * I}{2 * 3.142 * s}[/tex]
Generally the magnetic flux is mathematically represented as
[tex]\Phi = B * \pi * r^2[/tex]
=> [tex]\Phi = \frac{ 4\pi * 10^{-7} * 150 * I}{2 * 3.142 * s} * \pi * r^2[/tex]
=> [tex]\Phi = \frac{2.121 *10^{-8} * I }{s}[/tex]
Generally the induced emf is mathematically represented as
[tex]\epsilon =- \frac{d \Phi}{dt}[/tex]
=> [tex]\epsilon =- \frac{ 2.121 *10^{-8} }{ s } * \frac{d I}{dt}[/tex]
Generally the angular frequency is mathematically represented as
[tex]w = 2 \pi f[/tex]
=> [tex]w = 2 * 10*10^{3} \pi [/tex]
=> [tex]w = 20000 \pi [/tex]
So the current is mathematically represented as
[tex]I = I_o sin (wt)[/tex]
=> [tex]I = I_o sin ( 20000 \pi * t)[/tex]
So
[tex]\epsilon =- \frac{ 2.121 *10^{-8} }{ s } * \frac{d [ I_o sin ( 20000 \pi * t)]}{dt}[/tex]
[tex]\epsilon =- \frac{ 2.121 *10^{-8} }{ s } * I_o * 20000 \pi [ cos ( 20000 \pi * t) [/tex]
[tex]\epsilon =- \frac{ 2.121 *10^{-8} }{ s } * 0.5 * 20000 \pi [ cos ( 20000 \pi * t) [/tex]
[tex]\epsilon =- \frac{ 6.6*10^{-4} }{ s } [ cos ( 20000 \pi * t) [/tex]
Here the
[tex]\epsilon_{rms} = \frac{ \frac{ 6.6*10^{-4} }{ s }}{\sqrt{2} }[/tex]
=> [tex]\epsilon_{rms} = \frac{ 6.6*10^{-4} }{ s\sqrt{2} }[/tex]
But from the question we are told that [tex]V_{rms} = 200 \mu V = 200 * 10^{-6} \ V[/tex]
So
[tex]\frac{ 6.6*10^{-4} }{ s\sqrt{2} } = 200 * 10^{-6}[/tex]
=> [tex]6.6*10^{-4}= 2.8284 *10^{-4} * s[/tex]
=> [tex] s = 2.3 \ m [/tex]