Answer:
[tex]\boxed {x = 2}[/tex]
Step-by-step explanation:
Solve for the value of [tex]x[/tex]:
[tex]-\frac{2}{3}x + 3 = \frac{2}{3}x + \frac{1}{3}[/tex]
-Take [tex]\frac{2}{3}x[/tex] and subtract it from [tex]-\frac{2}{3}x[/tex]:
[tex]-\frac{2}{3}x + 3 -\frac{2}{3}x = \frac{2}{3}x - \frac{2}{3}x + \frac{1}{3}[/tex]
[tex]-\frac{4}{3}x + 3 = \frac{1}{3}[/tex]
-Subtract both sides and convert [tex]3[/tex] to a fraction:
[tex]-\frac{4}{3}x + 3 - 3 = \frac{1}{3} - 3[/tex]
[tex]-\frac{4}{3}x = \frac{1}{3} - \frac{9}{3}[/tex]
Since both [tex]\frac{1}{3}[/tex] and [tex]\frac{9}{3}[/tex] have the same denominator, then you would subtract the numerator:
[tex]-\frac{4}{3}x = \frac{1 - 9}{3}[/tex]
[tex]-\frac{4}{3}x = \frac{8}{3}[/tex]
-Multiply both sides by [tex]-\frac{3}{4}[/tex], which is the reciprocal of [tex]-\frac{4}{3}[/tex]:
[tex]x = \frac{8}{3} (-\frac{3}{4})[/tex]
[tex]x = \frac{-8(-3)}{3 \times 4}[/tex]
[tex]x = \frac{24}{12}[/tex]
-Divide [tex]24[/tex] by [tex]12[/tex]:
[tex]x = \frac{24}{12}[/tex]
[tex]\boxed {x = 2}[/tex]
So, therefore, the value of [tex]x[/tex] is [tex]2[/tex].