________________________

✩ Answer:
✧・゚: *✧・゚:*✧・゚: *✧・゚:*✧・゚: *✧・゚:*
[tex]\bold{Hello!}\\\bold{Your~answer~is~below!}[/tex]
✩ Step-by-step explanation:
✧・゚: *✧・゚:*✧・゚: *✧・゚:*✧・゚: *✧・゚:*
✺ Divide both sides by −3. Since −3 is negative, the inequality direction is changed:
✺ Divide −9 by −3 to get 3. Since they are both negatives it turns into a positive:
✺ Swap sides so that all variable terms are on the left hand side. This changes the sign direction once more:
✺ Add 2 to both sides:
✺ Add 3 and 2 to get 5:
✺ Divide both sides by 5. Since 5 is positive, the inequality direction remains the same:
✺ Divide 5 by 5 to get 1:
✺ So your answer is B, [tex]\boxed{x<1}[/tex].
(Number line is below.)
[tex]Hope~this~helps~and,\\Best~of~luck!\\\\~~~~~-TotallyNotTrillex[/tex]
Answer:
[tex]\boxed {x < 1}[/tex]
Step-by-step explanation:
Solve the following inequality:
[tex]-9 < -3(5x - 2)[/tex]
-When you are dividing an integer by a negative integer, then the inequality sign changes. So, divide both sides by [tex]-3[/tex]:
[tex]\frac{-9}{-3} < \frac{-3}{-3} + 5x - 2[/tex]
[tex]3 > 5x - 2[/tex]
-Switch sides:
[tex]5x - 2 < 3[/tex]
-Add [tex]2[/tex] to both sides:
[tex]5x - 2 + 2 = 3 + 2[/tex]
[tex]5x < 5[/tex]
-Divide both sides by [tex]5[/tex]:
[tex]\frac{5x}{5} < \frac{5}{5}[/tex]
[tex]\boxed {x < 1}[/tex]
The number line graphed (if needed):