Respuesta :
Answer:
About 0.72
Step-by-step explanation:
Given the data:
With device : 22.6, 23.4, 28.4, 29, 29.3, 20.0
Without device :26.9, 24.4, 20.8, 20.8, 20.2, 26.0, 28.1, 25.6
Using calculator:
With device data:
Sample size (n1) = 6
Degree of freedom (df1) = 6 - 1 = 5
Mean(m1) = 25.45
Variance (s²1) = 15.631
Without device data:
Sample size (n2) = 8
Degree of freedom (df2) = n - 1 = 7
Mean (m2) = 24.1
Variance (s²2) = 9.54
s²t = ((df1/(df1 + df2)) * s²1) + ((df2/(df1 + df2)) * s²2)
s²t = ((5/(5+7)*15.63) + ((7/(5+7))*9.54)
= ((5/12) * 15.63) + ((7/12) * 9.54) = 12.0775
s²m1 = s²t/n1 = 12.0775/6 = 2.0123
s²m2 = s²t/n2 = 12.0775/8 = 1.511
T - statistic :
Tstat = (m1 - m2)/√(s²m1 + s²m2)
Tstat = (25.45 - 24.10) / √(2.0123 + 1.511)
Tstat= 1.350/√3.5233
Tstat = 1.350 / 1.8770455
Tstat = 0.7192153 = 0.72
In this exercise we want to use the knowledge of statistics and probability to calculate the statistical test that counts:
[tex]0.72[/tex]
First, we have to separate the data informed in the text and analyze it, like this:
- With device : [tex][22.6, 23.4, 28.4, 29, 29.3, 20.0][/tex]
- Without device : [tex][26.9, 24.4, 20.8, 20.8, 20.2, 26.0, 28.1, 25.6][/tex]
Now doing with the device data calculations, we will find that:
- Sample size ([tex]n_1[/tex]) = 6
- Degree of freedom ([tex]df_1[/tex]) = 5
- Mean ([tex]m_1[/tex]) = 25.45
- Variance ([tex]s^2_1[/tex]) = 15.631
Now doing without device data calculations, we will find that:
- Sample size ([tex]n_2[/tex]) = 8
- Degree of freedom ([tex]df_2[/tex]) = 7
- Mean ([tex]m_2[/tex]) = 24.1
- Variance ([tex]s^2_2[/tex]) = 9.54
So to calculate the variance of the population we will use the data given above:
[tex]s~2t = ((df_1/(df_1 + df_2)) * s^2_1) + ((df_2/(df_1 + df_2)) * s^2_2)\\s^2t = ((5/(5+7)*15.63) + ((7/(5+7))*9.54)\\= ((5/12) * 15.63) + ((7/12) * 9.54) = 12.0775\\s^2m_1 = s^2t/n_1 = 12.0775/6 = 2.0123\\s^2m_2 = s^2t/n_2 = 12.0775/8 = 1.511[/tex]
For the calculation of the statistical test, we found that:
[tex]Tstat = (m_1 - m_2)/\sqrt{(s^2m_1 + s^2m_2)} \\Tstat = (25.45 - 24.10) / \sqrt{(2.0123 + 1.511)} \\Tstat= 1.350/\sqrt{3.5233} \\Tstat = 1.350 / 1.8770455\\Tstat = 0.7192153 = 0.72[/tex]
See more about statistics at brainly.com/question/10951564