Respuesta :

Answer:

[tex]m=8x-5-4\Delta x[/tex]

Step-by-step explanation:

We have the function:

[tex]f(x)=4x^2-5x-1[/tex]

And we want to use the difference quotient:

[tex]m=\frac{f(x+\Delta x)-f(x)}{\Delta x}[/tex]

To find the slope function.

So, let's substitute [tex]x+\Delta x[/tex] for our function. This yields:

[tex]m=\frac{(4(x+\Delta x)^2-5(x+\Delta x)-1)-(4x^2-5x-1))}{\Delta x}[/tex]

Let's square. Use the perfect square trinomial pattern. This yields:

[tex]m=\frac{(4(x^2+2x\Delta x-\Delta x^2)-5(x+\Delta x)-1)-(4x^2-5x-1))}{\Delta x}[/tex]

Distribute:

[tex]m=\frac{(4x^2+8x\Delta x-4\Delta x^2-5x-5\Delta x-1)-(4x^2-5x-1)}{\Delta x}[/tex]

Distribute the right:

[tex]m=\frac{(4x^2+8x\Delta x-4\Delta x^2-5x-5\Delta x-1)+(-4x^2+5x+1)}{\Delta x}[/tex]

Combine like terms:

[tex]m=\frac{(4x^2-4x^2)+(-5x+5x)+(1-1)+(8x\Delta x-4\Delta x^2-5\Delta x)}{\Delta x}[/tex]

The first three terms will cancel. This leaves us with:

[tex]m=\frac{8x\Delta x-4\Delta x^2-5\Delta x}{\Delta x}[/tex]

We can factor out a Δx from the numerator:

[tex]m=\frac{\Delta x(8x-4\Delta x-5)}{\Delta x}[/tex]

The Δx will cancel. So, our slope function is:

[tex]m=8x-5-4\Delta x[/tex]

And we're done!

Hopefully that helps