Respuesta :

Answer:

m∠STU is 20°

Step-by-step explanation:

If a ray bisects an angle, then it divides it into two equal angles in measures and the measure of each one is half the measure of this angle

∵ Ray TV bisects ∠STU

→ That means it divides it into two angles STV and UTV

m∠STV = m∠UTV = [tex]\frac{1}{2}[/tex] m∠STU

∵ m∠STV = ([tex]\frac{1}{4}[/tex]x + 8)°

∴ m∠UTV = (x + 2)°

→ Equate them

x + 2 = [tex]\frac{1}{4}[/tex]x + 8

→ Subtract 2 from both sides

∴ x + 2 - 2 =  [tex]\frac{1}{4}[/tex]x + 8 - 2

∴ x =  [tex]\frac{1}{4}[/tex]x + 6

→ Subtract  [tex]\frac{1}{4}[/tex]x from both sides

∴ x -  [tex]\frac{1}{4}[/tex]x =  [tex]\frac{1}{4}[/tex]x -  [tex]\frac{1}{4}[/tex]x + 6

∴  [tex]\frac{3}{4}[/tex]x = 6

→ Divide both sides by  [tex]\frac{3}{4}[/tex] to find x

x = 8

→ Substitute the value of x in the measure of any given angle

m∠UTV = 8 + 2 = 10°

∵ m∠UTV =  [tex]\frac{1}{2}[/tex] m∠STU

∴ 10° =  [tex]\frac{1}{2}[/tex] m∠STU

→ Multiply both sides by 2

∴ 20° = m∠STU

The measure of angle STU is 20°