Respuesta :
Rearrange the polynomial:
a^2–2ab+b^2 - c^2
((a-b)(a-b))-c^2
(a-b)^2-c^2
Set x =a-b and y=c. The formula becomes
x^2-y^2
factoring this polynomial, we get
(x+y)(x-y)
Substituting back, we get:
(a+b+c)(a+b-c)
Let’s multiply it out to check:
A^2 -ab ac
- ab B^2 -bc
-ac bc -c^2
Answer:
- (a + b + c)(a + b - c)
Step-by-step explanation:
Use of formula:
- (a+b)^2 = a^2 + 2ab + b^2
- a^2 - b^2 = (a + b)(a - b)
Factoring the expression
- a^2 + b^2 – c^2 + 2ab =
- (a^2 + 2ab + b^2) - c^2 =
- (a + b)^2 - c^2 =
- (a + b + c)(a + b - c)