Respuesta :

Answer:

[tex]2x-5y=-40\\-5y = -40-2x\\y = \frac{-40}{-5}-\frac{2x}{-5} \\y = \frac{2x}{5}+8[/tex]

Slope of a line perpendicular is  [tex]\frac{-5}{2}[/tex]

Step-by-step explanation:

Hey there!

The given equation is ; 2x - 5y = -40.

Or, 2x - 5y + 40 = 0

Slope of the equation is;

[tex]slope(m) = \frac{ - coeff. \: of \: x}{coeff. \: of \: y} [/tex]

[tex]m = \frac{ - 2}{ - 5} [/tex]

[tex]m = \frac{2}{5} [/tex]

Therefore, the slope of equation is 2/5.

Now; For the perpendicular lines:

Slope of equation * slope of next line = -1

i.e M1*M2= -1

[tex] \frac{2}{5} \times m2 = - 1[/tex]

[tex]2 \: m2 = - 5[/tex]

[tex]m2 = \frac{ - 5}{2} [/tex]

Therefore, the slope of the line which is perpendicular line to 2x - 5y + 40= 0 is -5/2.

Hope it helps....