Respuesta :

Answer:

C: 5/11

Step-by-step explanation:

The top line over the numbers usually mean the numbers are recurring (occurring again and again)

So 0.45 with the dash over the 45 means 0.454545454545... (goes forever, hence why we use the dash)

To solve you convert each option to a decimal and find one that has 0.45 recurring.

A: 4/5 =0.8

B: 5/9 = 0.55...

C: 5/11 = 0.45...

D: 4/9 = 0.44...

Hence, our answer is C.

Answer: It means that the numbers the bar is over repeats. Answer is C

Step-by-step explanation:

For example:

Example 1: [tex]0.123 \overline {4}[/tex] → The bar is only over the number 4 so only the number 4 repeats. [tex]0.123 \overline {4} = 0.123444444444444444444444...[/tex] with the number 4 repeating forever.

Example 2: [tex]0.12 \overline {34}[/tex] → This time the bar is over the 3 and the 4, so 34 and 4 repeat.  [tex]0.12 \overline {34} = 0.12343434343434...[/tex]

Example 3: [tex]0.1 \overline {234}[/tex] = 0.1234234234234234234...

Example 4: [tex]0. \overline {1234}[/tex] = 0.123412341234123412341234...\

To solve your problem, it will be easiest to use a calculator and test each answer.

Choice A:  [tex]\frac{4}{5} = .8 \neq . \overline{45}[/tex]

Choice B: [tex]\frac{5}{9} = 0.55555556 \neq 0. \overline{45}[/tex]

Choice C: [tex]\frac{5}{11} = 0.454545454545... = 0. \overline {45}[/tex]

Choice D: [tex]\frac{4}{9} = .44444444444... = 0. \overline {4} \neq 0. \overline {45}[/tex]

The Correct Answer is Choice C