Answer:
The dimension is [tex]D = L ^{2} T^{-1}[/tex]
Explanation:
From the question we are told that
[tex]J = -D \frac{dn}{dx}[/tex]
Here [tex][J] = \frac{1}{L^2 T}[/tex]
[tex][n] =\frac{1}{L^3}[/tex]
[tex][x] = L[/tex]
So
[tex]\frac{1}{L^2 T} = -D \frac{d(\frac{1}{L^3})}{d[L]}[/tex]
Given that the dimension represent the unites of n and x then the differential will not effect on them
So
[tex]\frac{1}{L^2 T} = -D \frac{(\frac{1}{L^3})}{[L]}[/tex]
=> [tex]D = \frac{L^{-2} T^{-1} * L }{L^{-3}}[/tex]
=> [tex]D = L ^{2} T^{-1}[/tex]