The thickness of photoresist applied towafers in a semiconductor manufacturing at a particular location onthe wafer is uniformly distributed between 0.2050 and 0.2150micrometers.(a) Determine the cumulative distributionfunction of photoresist thickness.(b) Determine the proportion of wafers that exceeds0.2125 micrometers in photoresist thickness.(c) What thickness is exceeded by 10% of thewafers?(d) Determine the mean and variance of photoresistthickness.

Respuesta :

Answer:

a

  [tex]f(x)= 100 [x - 0.2050][/tex]

b

 [tex]P(X > 0.2125) =  0.25 [/tex]

c

  [tex]a = 0.2140[/tex]

d

Mean [tex]\mu  = 0.21[/tex]

Variance  [tex]\sigma ^2  =  0.0000083 [/tex]

Step-by-step explanation:

From the question we are told that

   The thickness of photoresist follows a uniform distribution

So

     [tex]X\   \~{}\ U \{  0.2050 , 0.2150 \}[/tex]

Generally the probability density function  is mathematically represented as

[tex]F(x) =  \left \{  \frac{1}{ 0.2150 - 02050} , 0.2150< x < 0.2150[/tex]

=>  [tex]F(x) =  \left \{   100 , 0.2150< x < 0.2150[/tex]

Generally the cumulative distribution function is

   [tex]f(x) =  \int\limits^{x}_{- \infty} {F(x)} \, dx[/tex]

Here [tex]- \infty[/tex] means the lower limit which in this case is  02050

So

    [tex]f(x) =  \int\limits^{x}_{0.2050} {100} \, dx[/tex]

    [tex]f(x) =  100 \int\limits^{x}_{0.2050} {1} \, dx[/tex]

=>   [tex] f(x)=100 [ x ] | \left \ x} \atop {0.2050}} \right.[/tex]

=>   [tex]f(x)= 100 [x - 0.2050][/tex]

Generally the proportion of wafers that exceeds 0.2125 is mathematically represented as

     [tex]P(X > 0.2125) =  1 - F(0.2125)[/tex]

=>  [tex]P(X > 0.2125) =  1- 100[0.2125 - 0.2050][/tex]

=>   [tex]P(X > 0.2125) =  0.25 [/tex]

Generally the thickness which is exceeded by 10% of the wafers is mathematically represented as

       [tex]P(X  > a ) =  0.10[/tex]

=>    [tex]1 - F(a) = 0.10[/tex]

=>     [tex]1 -100 (a - 0.2050) = 0.10[/tex]

=>     [tex]100(a -0.2050) =  0.90[/tex]

=>   [tex]a - 0.2050 =  0.009[/tex]

=>   [tex]a = 0.2140[/tex]

Generally the mean is mathematically represented as  

     [tex]\mu  =  \frac{ 0.2050 -0.2150 }{2}[/tex]

=>   [tex]\mu  = 0.21[/tex]

Generally the variance  is mathematically represented as

    [tex]\sigma ^2  =  \frac{1}{12} [0.2150 - 0.2050]^2[/tex]

=>  [tex]\sigma ^2  =  0.0000083 [/tex]