Respuesta :

Answer:

76°

Step-by-step explanation:

[tex] \because \: m \angle \: 1 = m \angle \: 12 \\ (exterior \: alternate \: \angle s) \\ \\ \therefore \: (5x + 44) \degree = (8x + 8) \degree \\ \\ \therefore \: 5x + 44 = 8x + 8 \\ \\ 5x - 8x = 8 - 44 \\ \\ - 3x = - 36 \\ \\ x = \frac{ - 36}{ - 3} \\ \\ \huge \red{x = 12} \\ \\ \because \: m \angle \: 12 = (8x + 8) \degree \\ \\ \therefore \: m \angle \: 12 = = (8 \times 12 + 8) \degree \\ \\ \therefore \: m \angle \: 12 = = (96+ 8) \degree \\ \\ \therefore \: \purple{m \angle \: 12 = 104 \degree} \\ \\ \because \: m \angle \: 10 + m \angle \: 12 = 180 \degree \\(linear \: pair \: \angle s) \\ \\ \therefore \: m \angle \: 10 + 104 \degree = 180 \degree \\ \\ \therefore \: m \angle \: 10 = 180 \degree - 104 \degree \\ \\ \huge \orange{ \boxed{\therefore \: m \angle \: 10 = 76 \degree }}[/tex]