Respuesta :

Answer:

[tex]part \: \to a \: \\ \boxed{\gamma = 1.17 { \times 10}^{ - 6} \: m}

\\ \\ part \to\: b \\ \boxed{the \: ans = 355,102,030.67 \: or \: 3.55 { \times 10}^{8} \: times}[/tex]

Explanation:

[tex]\boxed{part \: a.} \\ let \: the \: radio \: wave \: length \: be \to \gamma _{r} \: \\ given \to \: v = f \gamma _{r} \: \\ the \: wave \: length \: \boxed{\gamma _{r} } \: is \to \: \frac{v}{f} \\ \gamma _{r} = \frac{v}{f} = \frac{350}{3 { \times 10}^{8} } = 1.1666667 { \times 10}^{ - 6} \\ \boxed{\gamma _{r} = 1.17 { \times 10}^{ - 6} \: m} \\ \\ \boxed{part \: b.}\\ let \: the \: water \: wave \: length \: be \to \gamma _{w} \: \\ to \: answer \: the \: second \: question : \\ first \: we \: find \: the\: frequency \: of \: the \\ \: water \: wave \to \\ \: if \: \to \: v = f\gamma _{w} \\ f = \frac{v}{ \gamma _{w}} \\ but \:\gamma _{w} \: is \: 1\% \: of \: \gamma _{r} \\ \gamma _{w} = \frac{1}{100} \times 1.1666667 { \times 10}^{ - 6} \\ \gamma _{w} = \underline{ 1.1666667 { \times 10}^{ - 8}}m \\ hence \to \\ f_{w} = \frac{v}{ \gamma _{r}} = \frac{1450}{1.1666667 { \times 10}^{ - 8}} \\ = \boxed{part \: a.} \\ let \: the \: radio \: wave \: length \: be \to \gamma _{r} \: \\ given \to \: v = f \gamma _{r} \: \\ the \: wave \: length \: \boxed{\gamma _{r} } \: is \to \: \frac{v}{f} \\ \gamma _{r} = \frac{v}{f} = \frac{350}{3 { \times 10}^{8} } = 1.1666667 { \times 10}^{ - 6} \\ \boxed{\gamma _{r} = 1.17 { \times 10}^{ - 6} \: m} \\ \\ \boxed{part \: b.}\\ let \: the \: water \: wave \: length \: be \to \gamma _{w} \: \\ to \: answer \: the \: second \: question : \\ first \: we \: find \: the\: frequency \: of \: the \\ \: water \: wave \to \\ \: if \: \to \: v = f\gamma _{w} \\ f = \frac{v}{ \gamma _{w}} \\ but \:\gamma _{w} \: is \: 1\% \: of \: \gamma _{r} \\ \gamma _{w} = \frac{1}{100} \times 1.1666667 { \times 10}^{ - 6} \\ \gamma _{w} = \underline{ 1.1666667 { \times 10}^{ - 8}}m \\ hence \to \\ f_{w} = \frac{v}{ \gamma _{r}} = \frac{1450}{1.1666667 { \times 10}^{ - 8}} \\ \boxed{f_{w} = 124,285,710,735} \\now \: thier \: frequency \: ratio \: is \to \\ \frac{f_{w}}{f_{r}} = \frac{124,285,710,735}{350} = 355,102,030.67 \\ \boxed{the \: ans = 355,102,030.67 \: or \: 3.55 { \times 10}^{8} \: times}[/tex]