In this 45-46-90 triangle , I have been given the length of a leg . How do I find the length of the hypotenuse

Answer:
nothing actually Iteursitskysjtskydjtsitsitsitskgditdkgd elhsitdlhclufluclydlhcogogjdy
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
Sum of the interior angles of any triangle equal 180° .
Thus ;
The angle which facing to the side 4 is 45°.
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
Hint :
In a right triangle, the side facing the 45° angle is √2 / 2 times the hypothenuse .
Thus ;
[tex] \frac{ \sqrt{2} }{2} x = 4 \\ [/tex]
Multiply sides by 2
[tex]2 \times \frac{ \sqrt{2} }{2} x = 2 \times 4 \\ [/tex]
[tex] \sqrt{2} x = 8 \\ [/tex]
Divide sides by √2
[tex] \frac{ \sqrt{2}x }{ \sqrt{2} } = \frac{8}{ \sqrt{2} } \\ [/tex]
[tex]x = \frac{4 \times 2}{ \sqrt{2} } \\ [/tex]
[tex]x = \frac{4 \times \sqrt{2} \times \sqrt{2} }{ \sqrt{2} } \\ [/tex]
[tex]x = 4 \sqrt{2} \\ [/tex]
[tex]x = hypothenuse = 4 \sqrt{2} [/tex]
Done...
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️