You tie the loose end of a 0.1 kg yo-yo string to your finger and then release the yo-yo so that it spins down toward the ground (the yo-yo is released from rest and the end of the string tied to your finger remains motionless). After the yo-yo falls a distance of 0.9 m, it has a translational speed of 4 m/s and an angular speed of 180 rad/s. What is the moment of inertia of the yo-yo

Respuesta :

Answer:

The answer is "[tex]5.06 \times 10^{-6} \ kg \ m^2[/tex]"

Explanation:

[tex]\to E_1=0..............(i)\\\\\to E_2= \frac{mV^2}{2} +\frac{Iw^2}{2} - mgh.............(ii)\\\\ \Delta E=0\\\\\to mgh= \frac{mV^2}{2} +\frac{Iw^2}{2} \\\\ \to 2 \ mgh= mV^2 +Iw^2\\\\ \to 2 \ mgh- mV^2 =Iw^2\\\\ \to m(2gh- V^2) =Iw^2\\\\ \to I= \frac{m(2gh- V^2)}{w^2}[/tex]

       [tex]= 5.06 \times 10^{-6} \ kg \ m^2[/tex]