-10, -14,18,-22 what's the explicit formula that can be used to determine the 9th term in this sequence A. A(n)=-4n-6 C. A(n)=n-10 B. A(n)=-4n-14. D. A(n)= n-4

Respuesta :

Answer:

[tex]A(n) = -4n -10[/tex]

Step-by-step explanation:

Given

[tex]Sequence:\ -10, -14, -18, -22[/tex]

Required

Determine the formula for the nth term

The sequence shows arithmetic progression.

So, we need to determine the common difference (d) first

[tex]d = A_2 - A_1[/tex]

In this case:

[tex]A_2 = 2nd\ Term = -14[/tex]

[tex]A_1 = 1st\ Term = -10[/tex]

So:

[tex]d = -14 - (-10)[/tex]

[tex]d = -14 + 10[/tex]

[tex]d = -4[/tex]

The nth term is then calculated as thus:

[tex]A(n) = A_1 + (n - 1)d[/tex]

[tex]A(n) = -14 + (n - 1)* -4[/tex]

[tex]A(n) = -14 -4n + 4[/tex]

[tex]A(n) = -4n + 4-14[/tex]

[tex]A(n) = -4n -10[/tex]