Arrange the steps in the correct order to solve this trigonometric equation 2sin^2 x -sinx -1 =0 for 0 degrees is less than or equal to x is less than or equal to 90 degrees

Respuesta :

Answer:

90°

Step-by-step explanation:

Given the trigonometry equation;

[tex]2sin^2 x -sinx -1 =0[/tex]

Step 1; Let p = sin(x) to have;

[tex]2sin^2 x -sinx -1 =0\\2P^2 -P -1 =0[/tex]

Step 2: factorize the resulting quadratic equation:

[tex]2P^2 -P -1 =0\\2P^2 -2P+P -1 =0\\\2P(P-1)+1(P-1)=0\\(2P+1)(P-1) = 0\\2P + 1 = 0 \ and \ P-1 = 0\\P = -1/2 \ and \ P =1[/tex]

Step 3: Find x:

when p = 1

sin(x) = 1

[tex]x = sin^{-1}1\\x = 90^0[/tex]

also when p  -1/2

sin (x) = -1/2

[tex]x = sin^{-1}-1/2\\x = -30^0\\[/tex]

[tex]x = 180-30\\x = 150^0[/tex]

Since 150° is not within the range 0<x<90, then the only solution is 90°

Answers:

In photo below

Explanation:

I got it correct in my test :)

Ver imagen websitetechie
Ver imagen websitetechie