Respuesta :

[tex]\large\bold{\underline{\underline{Given:-}}}[/tex]

[tex]\sf{m_1}[/tex] = 8kg

[tex]\sf{m_2}[/tex] = 4kg

g = 10m/s²

[tex]\large\bold{\underline{\underline{To \: Find:-}}}[/tex]

→Acceleration of block

→Tension in strings

[tex]\large\bold{\underline{\underline{Solution:-}}}[/tex]

Let, the two equation will be ,

[tex]\leadsto[/tex] 8g - T = 8a ..... Equation no (1)

[tex]\leadsto[/tex] T - 4g = 4a ..... Equation no (2)

Putting the value of equation no (1) and (2) we get,

[tex]\implies[/tex] 4g = 12a

[tex]\implies[/tex] 4 × 10 = 12a

[tex]\implies[/tex] 40 = 12a

[tex]\implies[/tex] a = [tex]\sf\dfrac{\cancel{40}}{\cancel{12}}[/tex]

[tex]\dashrightarrow[/tex] a = [tex]\dfrac{10}{3}[/tex]

Again, we have to putting the value of a in the equation no (2) we get,

[tex]\implies[/tex] T - 4g = 4 × [tex]\dfrac{10}{3}[/tex]

[tex]\implies[/tex] T - 4 × 10 = 4 × [tex]\dfrac{10}{3}[/tex]

[tex]\implies[/tex] T - 40 = [tex]\dfrac{40}{3}[/tex]

[tex]\implies[/tex] T = [tex]\dfrac{40}{3}[/tex] + 40

[tex]\implies[/tex] T = [tex]\dfrac{40 + 120}{3}[/tex]

[tex]\dashrightarrow[/tex] T = [tex]\dfrac{160}{3}[/tex] N

[tex]\therefore[/tex] Acceleration of block = [tex]\dfrac{10}{3}[/tex] m/s².

And, Tension in strings = [tex]\dfrac{160}{3}[/tex] N