Respuesta :
Answer:
-17
Step-by-step explanation:
[tex]2^3[/tex] - 5 * (6 + 4) ÷ 2
Following PEMDAS, we must focus on the parenthesis first.
[tex]2^3[/tex] - 5 * (6 + 4) ÷ 2
[tex]2^3[/tex] - 5 * (10) ÷ 2
Now we will focus on the exponent:
[tex]2^3[/tex] - 5 * 10 ÷ 2
8 - 5 * 10 ÷ 2
Now Multiplication/Division.
This is where you must follow the order in the equation where you see the multiplication sign first, so you multiply first.
8 - 5 * 10 ÷ 2
8 - 50 ÷ 2
Next, Divide:
8 - 50 ÷ 2
8 - 25
Subtract:
8 - 25
-17
[tex]2^3[/tex] - 5 * (6 + 4) ÷ 2 = -17.
2^3 - 5*(6+4) / 2
= 2^3 - 5*10 / 2 [PEMDAS says to perform functions inside the brackets first.]
= 8 - 5*10/2 [We solve the exponent]
= 8 - 50/2 [Perform the multiplication before the division]
= 8 - 25 [Perform division before subtraction]
= -17