Respuesta :

Answer:

-17

Step-by-step explanation:

[tex]2^3[/tex] - 5 * (6 + 4) ÷ 2

Following PEMDAS, we must focus on the parenthesis first.

[tex]2^3[/tex] - 5 * (6 + 4) ÷ 2

[tex]2^3[/tex] - 5 * (10) ÷ 2

Now we will focus on the exponent:

[tex]2^3[/tex] - 5 * 10 ÷ 2

8 - 5 * 10 ÷ 2

Now Multiplication/Division.

This is where you must follow the order in the equation where you see the multiplication sign first, so you multiply first.

8 - 5 * 10 ÷ 2

8 - 50 ÷ 2

Next, Divide:

8 - 50 ÷ 2

8 - 25

Subtract:

8 - 25

-17

[tex]2^3[/tex] - 5 * (6 + 4) ÷ 2 = -17.

2^3 - 5*(6+4) / 2

= 2^3 - 5*10 / 2    [PEMDAS says to perform functions inside the brackets first.]

= 8 - 5*10/2          [We solve the exponent]

= 8 - 50/2             [Perform the multiplication before the division]

= 8 - 25                 [Perform division before subtraction]

= -17