Respuesta :

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

[tex] \cos( \frac{5\pi}{12} ) = \cos( \frac{6\pi}{12} - \frac{\pi}{12} ) = \\ [/tex]

[tex] \cos( \frac{\pi}{2} - \frac{\pi}{12} ) = \sin( \frac{\pi}{12} ) \\ [/tex]

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

Also we have :

[tex] \sin( \frac{5\pi}{12} ) = \cos( \frac{\pi}{12} ) \\ [/tex]

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

So :

[tex] \cos( \frac{\pi}{12} ). \sin( \frac{\pi}{12} ) + \sin( \frac{\pi}{12} ) . \cos( \frac{\pi}{12} ) = \\ [/tex]

[tex]2 \sin( \frac{\pi}{12} ) . \cos( \frac{\pi}{12} ) \\ [/tex]

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

Hint :

[tex] \sin(2 \alpha ) = 2 \sin( \alpha ) . \cos( \alpha ) [/tex]

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

So ;

[tex]2 \sin( \frac{\pi}{12} ) . \cos( \frac{\pi}{12} ) = \\ [/tex]

[tex] \sin(2 \times \frac{\pi}{12} ) = \sin( \frac{\pi}{6} ) \\ [/tex]

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

[tex] \sin( \frac{\pi}{6} ) = \cos( - \frac{\pi}{3} ) \\ [/tex]

Thus the correct answer is the first option.

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️