Respuesta :
Given:
The vertices of a polygon QRST are T(-2, 3), Q(1, 5), R(3, -1) and S(0, 0).
To find:
The vertices for [tex]R_{x-axis}(QRST)[/tex].
Solution:
The rule [tex]R_{x-axis}(QRST)[/tex] represents refection of polygon QRST across the x-axis.
If a figure is reflected across the x-axis, then
[tex](x,y)\to (x,-y)[/tex]
Using this rule, we get
[tex]T(-2,3)\to T'(-2,-3)[/tex]
[tex]Q(1,5)\to Q'(1,-5)[/tex]
[tex]R(3,-1)\to R'(3,1)[/tex]
[tex]S(0,0)\to S'(0,0)[/tex]
Therefore, the vertices for [tex]R_{x-axis}(QRST)[/tex] are T'(-2, -3), Q'(1, -5), R'(3, 1) and S'(0, 0).
Rx-axis means that the polygon QRST is reflected across the x-axis.
The ordered pair after Rx-axis is Q'(1,5), R'(3,1), S'(0,0) and T'(2,3)
The points are given as:
[tex]\mathbf{Q = (1,5)}[/tex]
[tex]\mathbf{R = (3,-1)}[/tex]
[tex]\mathbf{S = (0,0)}[/tex]
[tex]\mathbf{T = (-2,3)}[/tex]
The rule of reflection across the x-axis is:
[tex]\mathbf{(x,y) \to (x,-y)}[/tex]
So, we have:
[tex]\mathbf{Q' = (1,-5)}[/tex]
[tex]\mathbf{R' = (3,1)}[/tex]
[tex]\mathbf{S' = (0,0)}[/tex]
[tex]\mathbf{T' = (-2,-3)}[/tex]
Hence, the ordered pair after Rx-axis is Q'(1,5), R'(3,1), S'(0,0) and T'(2,3)
Read more about reflections at:
https://brainly.com/question/938117