Respuesta :
Answer:
[tex] \huge{ \boxed{ \bold{ \tt{y = - 4}}}}[/tex]
Step-by-step explanation:
[tex] \sf{4y - 9 - 6y = 2(y + 5) - 3}[/tex]
Subtract like terms : 6y from 4y
[tex] \longrightarrow{ \sf{ - 2y - 9 = 2(y + 5) - 3}}[/tex]
Distribute 2 through the parentheses
[tex] \longrightarrow{ \sf{ - 2y - 9 = 2 *y + 2 *5 \: - 3}}[/tex]
[tex] \longrightarrow{ \sf{ - 2y - 9 = 2y + 10 - 3}}[/tex]
Subtract 3 from 10
[tex] \longrightarrow{ \sf{ - 2y - 9 = 2y + 7}}[/tex]
Move 2y to left hand side and change it's sign
[tex] \longrightarrow{ \sf{ - 2y - 2y - 9 = 7}}[/tex]
Move 9 to right hand side and change it's sign
[tex] \longrightarrow{ \sf{ - 2y - 2y = 7 + 9}}[/tex]
Combine like terms
[tex] \longrightarrow{ \sf{ - 4y =7 + 9}}[/tex]
Add the numbers : 7 and 9
[tex] \longrightarrow{ \sf{ - 4y = 16}}[/tex]
Divide both sides by -4
[tex] \longrightarrow{ \sf{ \frac{ - 4y}{ - 4} = \frac{16}{ - 4}}} [/tex]
Remember : Dividing a positive integer by any negative integer gives a negative integer.
[tex] \longrightarrow{ \boxed{ \sf{y = - 4}}}[/tex]
------------------------------------------------------------
Let's check whether the value of y is -4 or not.
Verification
L.H.S : [tex] \sf{4y - 9 - 6y}[/tex]
plug the value of y and simplify
[tex] \dashrightarrow{ \sf{4 * (- 4 )- 9 - 6 * (- 4)}}[/tex]
[tex] \dashrightarrow{ \sf{ - 16 - 9 - ( - 24)}}[/tex]
[tex] \dashrightarrow{ \sf{ - 16 - 9 + 24}}[/tex]
[tex] \dashrightarrow{ \sf{ - 16 + 15}}[/tex]
[tex] \dashrightarrow{ \sf{ - 1}}[/tex]
R.H.S :[tex] \sf{2(y + 5) - 3}[/tex]
plug the value of y and simplify
[tex] \dashrightarrow{ \sf{2( - 4 + 5) - 3}}[/tex]
[tex] \dashrightarrow{ \sf{2 *1 - 3}}[/tex]
[tex] \dashrightarrow{ \sf{2 - 3 }}[/tex]
[tex] \dashrightarrow{ \sf{ - 1}}[/tex]
∴ L.H.S = R.H.S
The value of y is -4
And we're done!
------------------------------------------------------------
Rules for solving an equation
- If any equation contains fractions , multiply each term by the LCM of denominators.
- Remove the brackets , if any.
- Collect the terms with the variable to left hand side and constant terms to the right side by changing their signs ' + ' into ' - ' and ' - ' into ' + '.
- Simplify and get the single term on each side.
- Divide each side by the coefficient of variable and then get the value of variable.
Hope I helped!
Best regards! :D
~TheAnimeGirl