which expression is equivalent to sin(pi/12)cos(7pi/12)-cos(pi/12)sin(7pi/12)? a) cos(-pi/2) b) sin(-pi/2) c) cos(2pi/3) d) sin(2pi/3)

Respuesta :

Answer:A

Step-by-step explanation:

Edge 2020

[tex]sin(\frac{\pi }{12})cos(\frac{7\pi}{12}) -cos(\frac{\pi }{12})sin(\frac{7\pi }{12})[/tex] is equivalent to [tex]sin(\frac{-\pi }{2} )[/tex].

What is trigonometric expression?

Trigonometric expressions are non-routine appearing problems. They are unfamiliar because the language of trigonometry looks foreign and complicated. In order to learn how to simplify or reduce the complexity of trigonometric expressions, we first need to examine the identities we need to utilize.

It is one of the identities of trigonometry

sinAcosB - cosAsinB = sin(A - B)

Given expression

[tex]sin(\frac{\pi }{12})cos(\frac{7\pi}{12}) -cos(\frac{\pi }{12})sin(\frac{7\pi }{12})[/tex]

It is in form of sinAcosB - cosAsinB = sin(A - B)

⇒ [tex]sin(\frac{\pi }{12})cos(\frac{7\pi}{12}) -cos(\frac{\pi }{12})sin(\frac{7\pi }{12})[/tex] = [tex]sin(\frac{\pi }{12}-\frac{7\pi }{12} )[/tex]

⇒ [tex]sin(\frac{\pi }{12})cos(\frac{7\pi}{12}) -cos(\frac{\pi }{12})sin(\frac{7\pi }{12})[/tex] = [tex]sin(\frac{-6\pi }{12} )[/tex]

⇒ [tex]sin(\frac{\pi }{12})cos(\frac{7\pi}{12}) -cos(\frac{\pi }{12})sin(\frac{7\pi }{12})[/tex] = [tex]sin(\frac{-\pi }{2} )[/tex]

Hence [tex]sin(\frac{\pi }{12})cos(\frac{7\pi}{12}) -cos(\frac{\pi }{12})sin(\frac{7\pi }{12})[/tex] is equivalent to [tex]sin(\frac{-\pi }{2} )[/tex].

Find out more information about trigonometric expression here

https://brainly.com/question/2142049

#SPJ2