Respuesta :

9514 1404 393

Explanation:

X is the midpoint of AC, so will have coordinates ...

  X = (A +C)/2 = ((0, 2a) +(2a, 0))/2 = (2a, 2a)/2

  X = (a, a)

Then the length of AX is ...

  d = √((x2 -x1)² +(y2 -y1)²)

  d = √((0 -a)² +(2a -a)²) = √(2a²) = a√2

and the length of BX is ...

  d = √((0 -a)² +(0 -a)²) = √(2a²) = a√2

The lengths AX and BX are the same, so ΔAXB is isosceles.