Simplify the expression

Answer:
Step-by-step explanation:
[tex]\dfrac{x^2-8x+12}{x^2-7x+10}\\\\x^2-7x+10\ne0\ \iff\ x=\frac{7\pm\sqrt{49-40}}{2}\ne0\ \iff\ x\ne5\ \wedge\ x\ne2\\\\\\\dfrac{x^2-8x+12}{x^2-7x+10}=\dfrac{x^2-2x-6x+12}{x^2-2x-5x+10}=\dfrac{x(x-2)-6(x-2)}{x(x-2)-5(x-2)}=\\\\\\ =\dfrac{(x-2)(x-6)}{(x-2)(x-5)}=\dfrac{x-6}{x-5}\\\\\\f(x)=x-6\\\\g(x)=x-5[/tex]