Answer:
f'(x) = 18x² - 18x + 12
Step-by-step explanation:
Differentiate using the power rule
[tex]\frac{d}{dx}[/tex] (a[tex]x^{n}[/tex] ) = na[tex]x^{n-1}[/tex]
Given
f(x) = (3x² + 6)(2x - 3) ← expand factors using FOIL
= 6x³ - 9x² + 12x - 18 , then
f'(x) = 3.6x² - 2.9x + 12
= 18x² - 18x + 12