Solve the following inequality using the algebraic approach:
5x-1 < 2x + 11

Answer:
[tex]\boxed {x < 4}[/tex]
Step-by-step explanation:
Solve the given inequality:
[tex]5x - 1 < 2x + 11[/tex]
-Take [tex]2x[/tex] and subtract it from [tex]5x[/tex]:
[tex]5x - 1 - 2x < 2x - 2x + 11[/tex]
[tex]3x - 1 < 11[/tex]
-Add both sides by [tex]1[/tex]:
[tex]3x - 1 + 1 < 11 + 1[/tex]
[tex]3x < 12[/tex]
-Since [tex]3[/tex] is positive, then the inequality sign remains the same. So, divide both sides by [tex]3[/tex]:
[tex]\frac{3x}{3} < \frac{12}{3}[/tex]
[tex]\boxed {x < 4}[/tex] (final answer)