Respuesta :

Answer:

(a)

[tex]Sum = -35[/tex]

[tex]Product = -51[/tex]

(b)

[tex]Product = 1785[/tex]

Step-by-step explanation:

Given

[tex]x^2 + 35x - 51 = 0[/tex]

Required

(a) Determine the sum and product of the equation

(b) Determine the products of the (a)

Solving (a)

The general form of a quadratic equation is:

[tex]ax^2 + bx + c = 0[/tex]

Where

[tex]Sum = -\frac{b}{a}[/tex]

[tex]Product = \frac{c}{a}[/tex]

By comparison of [tex]ax^2 + bx + c = 0[/tex] tp [tex]x^2 + 35x - 51 = 0[/tex]

[tex]a = 1[/tex]

[tex]b = 35[/tex]

[tex]c = -51[/tex]

So:

[tex]Sum = -\frac{b}{a}[/tex]

[tex]Sum = -\frac{35}{1}[/tex]

[tex]Sum = -35[/tex]

[tex]Product = \frac{c}{a}[/tex]

[tex]Product = \frac{-51}{1}[/tex]

[tex]Product = -51[/tex]

Solving (b)

From (a) above, we have:

[tex]Sum = -35[/tex]

[tex]Product = -51[/tex]

Their product is:

[tex]Product = -35 * -51[/tex]

[tex]Product = 1785[/tex]