Answer:
(a)
[tex]Sum = -35[/tex]
[tex]Product = -51[/tex]
(b)
[tex]Product = 1785[/tex]
Step-by-step explanation:
Given
[tex]x^2 + 35x - 51 = 0[/tex]
Required
(a) Determine the sum and product of the equation
(b) Determine the products of the (a)
Solving (a)
The general form of a quadratic equation is:
[tex]ax^2 + bx + c = 0[/tex]
Where
[tex]Sum = -\frac{b}{a}[/tex]
[tex]Product = \frac{c}{a}[/tex]
By comparison of [tex]ax^2 + bx + c = 0[/tex] tp [tex]x^2 + 35x - 51 = 0[/tex]
[tex]a = 1[/tex]
[tex]b = 35[/tex]
[tex]c = -51[/tex]
So:
[tex]Sum = -\frac{b}{a}[/tex]
[tex]Sum = -\frac{35}{1}[/tex]
[tex]Sum = -35[/tex]
[tex]Product = \frac{c}{a}[/tex]
[tex]Product = \frac{-51}{1}[/tex]
[tex]Product = -51[/tex]
Solving (b)
From (a) above, we have:
[tex]Sum = -35[/tex]
[tex]Product = -51[/tex]
Their product is:
[tex]Product = -35 * -51[/tex]
[tex]Product = 1785[/tex]