Respuesta :

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

Reminder :

[tex](x + a)(x + b) = {x}^{2} + (a + b)x + (a \times b) \\ [/tex]

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

[tex] {v}^{2} + ( - 7s {u}^{2} + s {u}^{2})v +( ( - 7s {u}^{2})(s {u}^{2} )) = \\ [/tex]

[tex] {v}^{2} - 6s {u}^{2} v - 7 {s}^{2} {u}^{4} \\ [/tex]

♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️

Answer:

v² - 6su²v - 7s²[tex]u^{4}[/tex]

Step-by-step explanation:

Each term in the second factor is multiplied by each term in the first factor, that is

= v(v + su²) - 7su²(v + su²) ← distribute both parenthesis

= v² + su²v - 7su²v - 7s²[tex]u^{4}[/tex] ← collect like terms

= v² - 6su²v - 7s²[tex]u^{4}[/tex]