Respuesta :
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
Reminder :
[tex](x + a)(x + b) = {x}^{2} + (a + b)x + (a \times b) \\ [/tex]
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
[tex] {v}^{2} + ( - 7s {u}^{2} + s {u}^{2})v +( ( - 7s {u}^{2})(s {u}^{2} )) = \\ [/tex]
[tex] {v}^{2} - 6s {u}^{2} v - 7 {s}^{2} {u}^{4} \\ [/tex]
♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️♥️
Answer:
v² - 6su²v - 7s²[tex]u^{4}[/tex]
Step-by-step explanation:
Each term in the second factor is multiplied by each term in the first factor, that is
= v(v + su²) - 7su²(v + su²) ← distribute both parenthesis
= v² + su²v - 7su²v - 7s²[tex]u^{4}[/tex] ← collect like terms
= v² - 6su²v - 7s²[tex]u^{4}[/tex]