△ABC is a right triangle with right angle C. Side AC¯¯¯¯¯¯¯¯ is 6 units longer than side BC¯¯¯¯¯¯¯¯. If the hypotenuse has length 217−−√ units, find the length of AC¯¯¯¯¯¯¯¯.

Respuesta :

Given:

In △ABC is a right angle triangle.

AC is 6 units longer than side BC.

[tex]Hypotenuse=2\sqrt{17}[/tex]

To find:

The length of AC.

Solution:

Let the length of BC be x.

So, Length of AC = x+6

According to the Pythagoras theorem, in a right angle triangle

[tex]Hypotenuse^2=Base^2+Perpendicualar^2[/tex]

△ABC is a right angle triangle and AC is hypotenuse, so

[tex](2\sqrt{17})^2=(x)^2+(x+6)^2[/tex]

[tex]68=x^2+x^2+12x+36[/tex]            [tex][\because (a+b)^2=a^2+2ab+b^2][/tex]

Subtract 68 from both sides.

[tex]0=2x^2+12x+36-68[/tex]

[tex]0=2x^2+12x-32[/tex]

[tex]0=2(x^2+6x-16)[/tex]

Divide both sides by 2.

[tex]x^2+6x-16=0[/tex]

Splitting the middle term, we get

[tex]x^2+8x-2x-16=0[/tex]

[tex]x(x+8)-2(x+8)=0[/tex]

[tex](x+8)(x-2)=0[/tex]

[tex]x=-8,2[/tex]

Side cannot be negative, so x=2 only.

Now,

[tex]AC=x+6[/tex]

[tex]AC=2+6[/tex]

[tex]AC=8[/tex]

Therefore, the length of AC is 8 units.