Use separation of variables to find, if possible, product solutions for the given partial differential equation. (Use the separation constant −λ ≠ 0. If not possible, enter IMPOSSIBLE.)

k∂^2u/∂x^2 - u = ∂u/∂t, k>0

Respuesta :

Answer:

Following are the solution to this question:

Step-by-step explanation:

differentail equation:

[tex]yu_{xy} + u = 0..........(1)[/tex]  

when [tex]u(x,y) = X(x)Y(y)[/tex]

[tex]u_x = \frac{\partial u}{\partial  x} X'Y' \\\\ u_{xy} = \frac{\partial^2 u }{ \partial x\ \partial  y}= X'Y'[/tex]

by substituting the value we get:

[tex]\to \int \frac{Y'}{Y} = -\lambda \int \frac{1}{y} dy\\\\[/tex]

by solving the value:

[tex]\to Y=c_3 y^{-\lambda}\\\\\therefore\ \ c_4=c_2C_3\\\\\to u(x,y) = c_4 e^{\frac{x}{\lambda}} y^{-\lambda}[/tex]

The solution of the given partial differential equation will be

[tex]u(x,y)=c_4e^\frac{x}{\lambda}y^{-\lambda}[/tex]

What is partial differential equation?

The partial derivative is a way to find the slope in either the x or y direction, at the point indicated.

[tex]yu_{xy}+u=0..............................(1)[/tex]

Now if [tex]u(x,y)=X(x)Y(y)[/tex]

[tex]u_x=\dfrac{\partial u}{\partial x} X'Y'[/tex]

[tex]u_{xy}=\dfrac{\partial^2u}{\partial x\ \partial y}=X'Y'[/tex]

by substituting the value, we get:

[tex]\int \dfrac{Y'}{Y}=-\lambda\int\dfrac{1}{y}dy[/tex]

by solving the value:

[tex]Y=c_3y^{-\lambda}[/tex]

[tex]c_4=c_2c_3[/tex]

[tex]u(x,y)=c_4e^\frac{x}{\lambda}y^{-\lambda}[/tex]

Hence the  solution of the given partial differential equation will be

[tex]u(x,y)=c_4e^\frac{x}{\lambda}y^{-\lambda}[/tex]

To know more about partial differential equation follow

https://brainly.com/question/2293382