Answer:
[tex]F=3.61\times 10^{-47}\ N[/tex]
Explanation:
Mass of a proton, [tex]m_p=1.67\times 10^{-27}\ kg[/tex]
Mass of an electron, [tex]m_e=9.11\times 10^{-31}\ kg[/tex]
The distance between the electron and the proton is, [tex]r=5.3\times 10^{-11}\ m[/tex]
We need to find the mutual attractive gravitational force between the electron and proton. The gravitational force is given by :
[tex]F=G\dfrac{m_em_p}{r^2}[/tex]
Where G is the universal Gravitational constant
[tex]F=6.67\times 10^{-11}\times \dfrac{9.11\times 10^{-31}\times 1.67\times 10^{-27}}{(5.3\times 10^{-11})^2}\\\\F=3.61\times 10^{-47}\ N[/tex]
So, the force between the electron and proton is [tex]3.61\times 10^{-47}\ N[/tex].