Use the graph of y = sin x to find all values of x, 0 < x < 2pi, for which the following is true. (Enter your answers as a comma-separated list.)
sin x = 0​

Respuesta :

Answer:

if x = pi/2, then y =1.

if x = pi/4, then y = [tex]\frac{\sqrt{2 } }{2}[/tex]

if x = pi, then y = 0

Step-by-step explanation:

The required answer as a comma-separated lists are (0, 0),  ([tex]\frac{\pi}{6}[/tex], 0.5), ( [tex]\frac{\pi}{4}[/tex],  [tex]\frac{1}{\sqrt{2} }[/tex]),  ( [tex]\pi[/tex], 0)

Given the equation of a sine graph expressed as:

[tex]y=sinx[/tex] for all values of x within the range 0 < x < 2π

We need to get the value of y for the values of x within the range as shown:

If x = 0;

y = sin0

y = 0

The required solution is (0, 0)

If x = 30;

y = sin30

y = 0.5

The required solution is ([tex]\frac{\pi}{6}[/tex], 0.5)

If x = [tex]\frac{\pi}{4}[/tex];

y = sin [tex]\frac{\pi}{4}[/tex]

y = [tex]\frac{1}{\sqrt{2} }[/tex]

The required solution is ( [tex]\frac{\pi}{4}[/tex],  [tex]\frac{1}{\sqrt{2} }[/tex])

If x = [tex]\pi[/tex]

y = sin [tex]\pi[/tex]

y = 0

The required solution is at ( [tex]\pi[/tex], 0)

If x = [tex]2\pi[/tex]

y = sin[tex]2\pi[/tex]

y = 0

Hence the required answer as a comma-separated lists are (0, 0),  ([tex]\frac{\pi}{6}[/tex], 0.5), ( [tex]\frac{\pi}{4}[/tex],  [tex]\frac{1}{\sqrt{2} }[/tex]),  ( [tex]\pi[/tex], 0)

Learn more here: https://brainly.com/question/2919352