Respuesta :

The solution of the trigonometric equation  are, [tex]x=\frac{\pi}{2},\frac{3\pi}{2}[/tex]

Trigonometric equation:

Given equation are,

           [tex]cos(\frac{\pi}{4} -x)=\frac{\sqrt{2} }{2}sinx[/tex]

We know that,  [tex]cos(A-B)=cosA cosB+sinAsinB[/tex]

         [tex]cos(\frac{\pi}{4} -x)=\frac{\sqrt{2} }{2}sinx\\\\cos\frac{\pi}{4} *cosx+sin\frac{\pi}{4} *sinx=\frac{\sqrt{2} }{2}sinx\\\\\frac{\sqrt{2} }{2}cosx+\frac{\sqrt{2} }{2}sinx=\frac{\sqrt{2} }{2}sinx\\\\\frac{\sqrt{2} }{2}cosx=0\\\\cosx=0\\\\x=\frac{\pi}{2},\frac{3\pi}{2}[/tex]

Hence, The solution of the trigonometric equation  are, [tex]x=\frac{\pi}{2},\frac{3\pi}{2}[/tex]

Learn more about the trigonometric equation here :

https://brainly.com/question/14421002