Write the complete proof in your paper homework and for online (only) complete the probing statement (if any) that is a part of your proof or related to it.

Write the complete proof in your paper homework and for online only complete the probing statement if any that is a part of your proof or related to it class=

Respuesta :

Answer:

See Explanation

Step-by-step explanation:

[tex] m\angle ADB = m\angle CDB... (given) \\\\

\therefore m\angle ADM = m\angle CDM... (1)\\

(\because D-M-B) \\\\

In\: \triangle 's ADM \: \&\: CDM\\\\

\overline{AD} \cong\overline {CD} ... (given) \\\\

m\angle ADM = m\angle CDM.(From \:1)\\\\

\overline{DM} \cong\overline{DM} ... (given) \\\\

\therefore \triangle ADM \: \cong\: \triangle CDM\\.. (By \: SAS\: postulate) \\\\

\therefore \overline{AM} \cong\overline{CM}..(2)\\(by\: c. s. c. t.) \\\\

m\angle AMD = m\angle CMD..(3)\\(by\: c. a. c. t.)\\\\

\because m\angle AMD + m\angle CMD= 180\degree ..(4)\\

(Linear\: pair\: \angle 's)\\\\

\therefore m\angle AMD + m\angle AMD= 180\degree \\..(From \: 3 \: \& \: 4)\\\\

\therefore 2m\angle AMD = 180\degree\\\\

\therefore m\angle AMD = \frac{180\degree}{2}\\\\

\therefore m\angle AMD =90\degree \\\\

\red{\implies \overline{MD} \perp\overline{AM}} \\\\

\implies m\angle AMB=m\angle CMB= m\angle CMD = 90\degree.. (5)\\\\

In\: \triangle 's ABM \: \&\: CBM\\\\

\overline{AM} \cong\overline{CM}\\.(From \: 2)\\\\

m\angle AMB=m\angle CMB\\..(each\: 90\degree) \\\\

\overline{BM} \cong\overline{BM} ... (common) \\\\

\therefore \triangle ABM \: \cong\: \triangle CBM\\.. (By \: SAS\: postulate) \\\\

\therefore m\angle BAM = m\angle BCM\\(by\: cact) \\\\

\purple {\implies m\angle BAC = m\angle BCA} \\(\because A-M-C) [/tex]