Respuesta :

32 days

Further explanation

General formulas used in decay:  

[tex]\large{\boxed{\bold{N_t=N_0(\dfrac{1}{2})^{t/t\frac{1}{2} }}}[/tex]

t = duration of decay  

t 1/2 = half-life  

N₀ = the number of initial radioactive atoms  

Nt = the number of radioactive atoms left after decaying during T time  

The half-life of iodine-131 is 8 days

No=80 g

Nt=5 g

[tex]\tt 5=80(\dfrac{1}{2})^{t/8}\\\\\dfrac{5}{80}=\dfrac{1}{2}^{t/8}\\\\\dfrac{1}{2}^4=\dfrac{1}{2}^{t/8}\\\\4=\dfrac{t}{8}\rightarrow 32~days[/tex]