3. If m angle 2=98°, m angle 3=23°, and m angle 8=70°, find each measure. 4. If m angle 3=54°, find each measure.

Answer:
Step-by-step explanation:
3). m∠1 = 180° - 98° = 82°
m∠7 = 180° - ( 98° + 23° ) = 59°
m∠6 = 180° - ( 70° + 59° ) = 51°
m∠9 = m∠6 = 51°
m∠10 = 180° - 51° = 129°
m∠4 = 180° - ( 70° + 51° ) = 59°
m∠54 = 180° - (23° + 59° ) = 98°
4). m∠1 = m∠4 = m∠11 = m∠13 = 90° - 54° = 36°
m∠2 = m∠5 = 90°
m∠6 = m∠3 = m∠8 = m∠10 = 54°
m∠7 = m∠9 = 90° + 36° = 126°
m∠12 = m∠14 = 180° - 36° = 144°
The measure of an an angle can be found from other known angles and the angular relationships present
The measures of the angles are;
3. a. m∠1 = 82°, [tex]{}[/tex] b. m∠4 = 59°, c. m∠5 = 98°, d. m∠6 = 51°, e. m∠7 = 59°, [tex]{}[/tex] f. m∠9 = 51°
4. a. m∠1 = 36°, [tex]{}[/tex] b. m∠2 = 90°, c. m∠4 = 36°, d. m∠5 = 90°, e. m∠6 = 54°, [tex]{}[/tex] f. m∠7 = 126°, g. m∠8 = 54°, h. m∠9 = 126°, i. m∠10 = 54°, [tex]{}[/tex] j. m∠11 = 36°, k. m∠12 = 144°, l. m∠13 = 36°, m. m∠14 = 144°
The reason the above values are correct are as follows;
The known parameters are;
m∠2 = 98°
m∠3 = 23°
m∠8 = 70°
a. m∠1 and m∠2 are linear pair angles
Therefore;
m∠1 + m∠2 = 180°
m∠1 + 98° = 180°
m∠1 = 180° - 98° = 82°
m∠1 = 82°
b. m∠4 = m∠7 = 180° - m∠2 - m∠3
∴ m∠4 = 180° - 98° - 23° = 59°
m∠4 = 59°
c. m∠5 = 180° - m∠3 - m∠4 (sum of angles on a line)
∴ m∠5 = 180° - 23° - 59° = 98°
m∠5 = 98°
Also m∠2 = m∠5 (corresponding angles)
d. m∠6 = 180 - m∠7 - m∠8 (sum of angles on a line)
∴ m∠6 = 180° - 59° - 70° = 51°
m∠6 = 51°
e. m∠7 = m∠4 = 59° (alternate interior angles theorem)
f. m∠9 = 180 - m∠4 - m∠8 (angles sum property of a triangle)
∴ m∠9 = 180° - 59° - 70° = 51°
m∠9 = 51°
Also, m∠9 = m∠6 = 51° (corresponding angles)
4. m∠3 = 54° (given)
a. m∠1 = 180° - 90° - 54° = 36° (sum of angles on a line)
m∠1 = 36°
b. m∠2 = 90° (given, geometry symbol)
c. m∠4 = m∠1 = 36° (vertical angles)
m∠4 = 36°
d. m∠5 = m∠2 = 90° (vertical angles)
m∠5 = 90°
e. m∠6 = m∠3 = 54° (vertical angles)
m∠6 = 54°
f. m∠7 = m∠1 + m∠2 (corresponding angles, angle addition)
m∠7 = 36° + 90° = 126°
m∠7 = 126°
g. m∠8 = 180° - m∠7 (linear pair)
m∠8 = 180° - 126° = 54°
m∠8 = 54°
h. m∠9 = m∠7 = 126° (vertical angles)
m∠9 = 126°
i. m∠10 = m∠8 = 54° (vertical angles)
m∠10 = 54°
j. m∠11 = 180° - m∠5 - m∠8 (angles sum property of a triangle)
m∠11 = 180° - 90° - 54° = 36°
m∠11 = 36°
k. m∠12 = 180° - m∠11 (linear pair)
m∠12 = 180° - 36° = 144°
m∠12 = 144°
l. m∠13 = m∠11 = 36° (vertical angles)
m∠13 = 36°
m. m∠14 = m∠12 = 144° (vertical angles)
m∠14 = 144°
Learn more about angles formed between two parallel lines having a common transversal here:
https://brainly.com/question/11803850