Respuesta :

Answer:

x = 33.13 units

Step-by-step explanation:

Let the altitude of the triangle be h units.

[tex] \sin 65 \degree = \frac{h}{31} \\ \\ 0.906307787 = \frac{h}{31} \\ \\ h = 0.906307787 \times 31 \\ \\ h = 28.0955414 \\ \\ \cos \: 32 \degree = \frac{h}{x} \\ \\ 0.8480480962 = \frac{28.0955414}{x} \\ \\ x = \frac{28.0955414}{0.8480480962} \\ \\ x = 33.1296556 \\ \\ x \approx 33.13 \: units[/tex]

Answer:

  • x = 23.7926

Step-by-step explanation:

Step 1

Find the length of vertical line segment, lets call it h. Use function cos

  • h/31 = cos 66°
  • h = 31 * cos 66° = 31*0.4067 = 12.6077

Step 2

Find x using another function, sin

  • h/x = sin 32°
  • x = h / sin 32°
  • x = 12.6077 / 0.5299
  • x = 23.7926